--- title: "Additional exercise 12" author: "Per August Jarval Moen" date: "2024" output: pdf_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` We begin by loading the data: ```{r} link="http://www.uio.no/studier/emner/matnat/math/STK3100/data/lowbirthweight.txt" data=read.table(link,header=T) data$low = as.factor(data$low) data$smoke = as.factor(data$smoke) data$ht = as.factor(data$ht) data$ui = as.factor(data$ui) data$ftv = as.factor(data$ftv) data$ptl = as.factor(data$ptl) data$race = as.factor(data$race) ``` ## a We fit a logistic regression model using low as response and the other eight variables given above as covariates: ```{r} fullmodel = glm(low ~age + lwt + race + smoke+ht + ui + ftv+ptl, family = binomial(link="logit"), data = data) summary(fullmodel) ``` ## b We use the tip and use the \textbf{drop1} function to drop a single term at a time. By specifying "Chisq" we use the ```{r} drop1(fullmodel,test="Chisq") ``` From the output, we should remove ftv. Continuing: ```{r} newmodel = glm(low ~age + lwt + race + smoke+ht + ui +ptl, family = binomial(link="logit"), data = data) drop1(newmodel,test="Chisq") ``` From the new model we should remove age: ```{r} newmodel = glm(low ~ lwt + race + smoke+ht + ui +ptl, family = binomial(link="logit"), data = data) drop1(newmodel,test="Chisq") ``` Finally we remove ui: ```{r} newmodel = glm(low ~ lwt + race + smoke+ht +ptl, family = binomial(link="logit"), data = data) drop1(newmodel,test="Chisq") summary(newmodel) ``` After removing ui, all covariates are significant. The final model is interpreted as such: - The odds ratio of low birth weight associated with a unit increase in the mother's weight is estimated to be $\exp(-0.0165) = 0.983$, keeping the other covariates fixed. That is, an increase of one pound in the mother's weight reduces the odds of low birth weight by approximately $2\%$. - The odds ratio of low birth weight of babies with white mothers versus black mothers is estimated to be $\exp(-1.25) = 0.29$, keeping the other covariates fixed. That is, the odds of a white mother having a baby with low birth weight is approximately $29\%$ of the odds for a black mother with the same characteristics. - The odds ratio of low birth weight of babies with mothers of race "other" versus black mothers is estimated to be $\exp(-0.39) = 0.68$, keeping the other covariates fixed. That is, the odds of a mother with race "other" having a baby with low birth weight is approximately $68\%$ of the odds for a black mother with the same characteristics. - The remaining coefficients are interpreted similarly.