d = read.table("../data/ozone.data",header=T) plot(d$temperature,d$ozone) fit1 = smooth.spline(d$temperature,d$ozone,df=5) lines(fit1) d = d[order(d$temperature),] fit.loess0 = loess(ozone~temperature,data=d,span=0.5,degree=0) pred0 = predict(fit.loess0,d,lwd=2) lines(d$temperature,pred0,col=2,lwd=2) fit.loess1 = loess(ozone~temperature,data=d,span=0.5,degree=1) pred1 = predict(fit.loess1,d,lwd=2) lines(d$temperature,pred1,col=3,lwd=2) fit.loess2 = loess(ozone~temperature,data=d,span=0.5,degree=2) pred2 = predict(fit.loess2,d,lwd=2) lines(d$temperature,pred2,col=4,lwd=2) legend("topleft",c("s-spline","loess0","loess1","loess2"),lwd=2, lty=1,col=1:4) fit = loess(ozone~temperature+wind,data=d,span=0.9) pred = predict(fit,d) library(lattice) Wind = equal.count(d$wind, number = 3, overlap = .1) Temp = equal.count(d$temperature, number = 3, overlap = .1) d$pred = pred d = d[order(d$radiation),] xyplot(ozone+pred ~ radiation | Temp*Wind, data = d, xlab = "Radiation", ylab = "Ozone",layout=c(3,3), scales=list(x=list(log = 10, equispaced.log=TRUE)), # par.settings=list(superpose.symbol=list(type=c("l","p"))), type=c("l","p"), alpha=1/5,lwd=2,col=1:2,lty="solid",as.table=TRUE)