#Problem 1 datadir = "http://www.uio.no/studier/emner/matnat/math/STK2100/data/" nuclear = read.table(paste(datadir,"nuclear.dat",sep=""),header=T) n = nrow(nuclear) #Fit with all covariates fit = lm(log(cost)~.,data=nuclear) #Fit with t1 taken away. fit2 = lm(log(cost)~.-t1,data=nuclear) d.new = data.frame(date=70.0,t1=13,t2=50,cap=800,pr=1, ne=0,ct=0,bw=1,cum.n=8,pt=1) predict(fit,d.new,interval="confidence") predict(fit,d.new,interval="predict") x = model.matrix(log(cost)~.,data=nuclear) y = log(nuclear$cost) library(glmnet) grid=10^seq(1,-5,length=100) lasso.mod=glmnet(x,y,alpha=1,lambda=grid) plot(lasso.mod,xvar="lambda") set.seed(1) cv.out=cv.glmnet(x,y,alpha=1) plot(cv.out) cv.out #Problem 2 datadir = "http://www.uio.no/studier/emner/matnat/math/STK2100/data/" Fe <- read.table(paste(datadir,"fe.dat",sep=""),header=T,sep=",") fit <- lm(Fe~form,data=Fe) summary(fit) Fe$form <- as.factor(Fe$form) fit1 <- lm(Fe~form,data=Fe) summary(fit1) fit2 <- lm(Fe~form+0,data=Fe) summary(fit2) options(contrasts=c("contr.sum","contr.sum")) fit3 <- lm(Fe~form,data=Fe) summary(fit3) newdata = data.frame(form=as.factor(c(1,2,3,4))) pred1 = predict(fit1,newdata) pred2 = predict(fit2,newdata) pred3 = predict(fit3,newdata)