ࡱ> _ Rbjbj *$9b9bB | |    8D4x $hyyy$$$$$$$$%(j<$yyyyy<$Q$;;;y^$;y$;;"O#Qd^#$g$0$x#);)4#)#pyy;yyyyy<$<$;yyy$yyyy)yyyyyyyyy| B : Lsning av Utfordring 1 Punkt a 1 Det er 4 pokerhender som gir royal straight flush, nemlig 10-Kn-D-K-Ess i hver av de fire fargene. 2 I straight flush kan ess regnes som det minste kortet. I hver farge er det derfor 9 ulike mter vi kan f straight flush p (nr vi ser bort fra royal straight flush): start med ess, 2, 3, ...., 8 eller 9. Vi kan derfor f straight flush p 4 9 = 36 mter. 3 Vi kan f fire like i 13 ulike verdier (2, 3, 4, ...., 10, Kn, D, K eller Ess.). For en gitt verdi kan vi velge de fem kortene p  EMBED Equation.DSMT36  mter. Totalt kan vi derfor f fire like p 48 13 = 624 mter. 4 Vi kan velge ut de to verdiene som skal inng i huset p  EMBED Equation.DSMT36  mter. For gitte verdier det  EMBED Equation.DSMT36  mter velge ut fargene p nr vi tar hensyn til at det kan vre to eller tre kort i de to verdiene. Totalt kan vi derfor f fullt hus p  EMBED Equation.DSMT36  mter. 5 Vi kan f alle fem kortene i samme farge p  EMBED Equation.DSMT36  mter. Fra dette m vi trekke de 4 + 36 = 40 mtene som gir royal flush og straight flush. Derfor kan vi f flush p 5108 mter. 6 Det er ti mulige startverdier for straight (siden ess kan telle bde som laveste og hyeste kort). For gitt startverdi er det  EMBED Equation.DSMT36  mulige mter vi kan f straight p. Totalt gir dette  EMBED Equation.DSMT36  mter. Fra dette m vi trekke de 4 + 36 = 40 mtene som gir royal flush og straight flush. Derfor kan vi f straight p 10200 mter. 7 Vi skal ha tre kort av en verdi og de to andre kortene i to andre verdier. Vi kan velge ut disse tre verdiene p  EMBED Equation.DSMT36  mter, og gitt de tre verdiene kan vi velge den verdien vi skal ha tre like i p 3 mter. Endelig kan vi gitt alt dette, velge ut fargene p  EMBED Equation.DSMT36  mter. Totalt kan vi alts f tre like p  EMBED Equation.DSMT36 mter. 8 Vi skal ha to kort av en verdi, to kort av en annen verdi og det siste kortet i en tredje verdi. Vi kan velge de to verdiene vi skal ha par i p  EMBED Equation.DSMT36 . Gitt verdiene, kan vi velge fargene p  EMBED Equation.DSMT36  mter. Totalt kan vi alts f to par p  EMBED Equation.DSMT36  mter. 9 Ved et tilsvarende argument som for tre like, fr vi at vi kan f par p  EMBED Equation.DSMT36  mter. Punkt b Det fins totalt  EMBED Equation.DSMT36  mulige pokerhender. Hvis kortene er stokket (veldig!) godt, er alle disse like sannsynlige. Vi fr sannsynligheten for de ulike pokerhendene ved dele antallene i oppgave a p antall mulige pokerhender.       !$   - . / 0 C ] j ƻƻ|r|_Pr|JD hVCJ hlCJjhHMthHMtCJEHU$jOjX hHMtCJUVmHnHujhj5CJU hj5CJ hj55CJhhCJ OJQJaJ h~`CJOJQJhhj5CJ OJQJaJ hj5CJOJQJhj55CJOJQJh 5CJOJQJhj5hhj55CJOJQJaJhXB5CJOJQJaJhd25CJOJQJaJ!#  =>G ^`gd gd d^gd gdj q      }ncYhj5CJOJQJhj55CJOJQJjH hHMthHMtCJEHU$jMOjX hHMtCJUVmHnHujhHMthHMtCJEHU$jDOjX hHMtCJUVmHnHujhHMthHMtCJEHU$j9OjX hHMtCJUVmHnHujhj5CJU hj55CJhhCJ OJQJaJ hj5CJ hlCJ `    ( ) * + a b z { | } ȳwgN>ȳjhj5CJEHOJQJU0j(? hj5CJOJPJQJUVmHnHujhj5CJEHOJQJU0j'? hj5CJOJPJQJUVmHnHujhj5CJOJQJUhj5CJOJQJhj55CJOJQJhhCJ OJQJaJ hHMtCJ hj5CJjhj5CJUjhHMthHMtCJEHU0jVOjX hHMtCJOJPJQJUVmHnHuwx!":;<=hi 89:;|mZKj%hHMthHMtCJEHU$jOjX hHMtCJUVmHnHuhhCJ OJQJaJ h~`CJj!hHMthHMtCJEHU$jxOjX hHMtCJUVmHnHujhHMthHMtCJEHU$jqOjX hHMtCJUVmHnHujhHMthHMtCJEHU$jiOjX hHMtCJUVmHnHujhj5CJU hj5CJ hj55CJ;Ede}~2345=>DFGWXp}nd]] h5CJhj5CJOJQJjK0hHMthHMtCJEHU$jOjX hHMtCJUVmHnHu hj55CJhhCJ OJQJaJ jc,hHMthHMtCJEHU$jOjX hHMtCJUVmHnHuj(hHMthHMtCJEHU$jOjX hHMtCJUVmHnHujhj5CJU h~`CJ hj5CJpqrsABCEFHIKLNPQRļhj5h3jh3Uhj5CJOJQJ hj5CJjhj5CJUj_4hHMthHMtCJEHU$jOjX hHMtCJUVmHnHuGABDEGHJKMNOPQRh]h gd ^`gd(h. A!"#$% Dd h  s *A? ?3"`?2qq py݈׻D`!qq py݈׻j @ }xTMlQ[nbMƟ658H=!BcouU((I<xlP=kI{&Ķr;o}3#5 HtK‘vٔ8霍ʸ CvlcOqT xiy?ɸ'dNN~XPe[ON; v??W.%ҦpOdL4XwCBoWm qT~ y,;&L\lB׍raO桒͇BR$ݬeWHXam$.̚tQ CJt:Ȯ^1}(y~krَ(ʊ;--ׅt.,.lV12{F AA΂MAoT-U&AO:J=W 8өvrZϘZj^|?3f:̔ylI )33IsI?= G!iQ 0 S-I4苤;{F ;IN$UmrÌl Abw[ml &pm9`֭GgQr(jCnsH*Dd h  s *A? ?3"`?2nwtdah]+J`!Bwtdah]+@ xRKkQN5Ӂ̴n(4H\4H0S\H2ѬLwM(]E" PL"x{99H HlN[ 2(IpEq2MI͔mOΐLw''Srйx󞐞\8Wi}{C7ͥ*Ϫ7:˳.Ly틏ݬ}{sϓ7uAFrFstTl?slIsI<^˫5vJx?s5jMx^(0F!4I._sRZ_)U`ZAv + [C[K0bѪ-nD˸:8~vJl/NÙJvl`CjL+ޖlOac=( (8Q8qwW&<0MtXjP<5d<. #( *q9>v,2 (}Bx;1[:,n!pmr%n,-]*+%s+L*VRiP/ITl]GXݟQXMTWjEƩDؗGZ'1vn>IΛYG]˛ٝgܵ 'L9c4A($ ޢОyj@|ҡHHR)6w^+@PbmffWq2GtpwLVz2ת726ǐgXܱ=ED/Dd \h  s *A? ?3"`?2. 4璆lY `!. 4璆lY` @0 xTAkAf6ItK6VbXTڂ-ML)&E%F]54Ҥx1P$=xC/yI)Yх 6jlμy;޼rY$>>)% YMݘ8n$ N!F9*4Ҭ>?C;*⽻68ٞܣ2)Sởrf>Rհ#/^u .7|e[%#//0l0o`CxoAqhűAqԻbo' MUO"zrג^^xsy$7Sy =_\ |Ioaq!#==F3澔 |;uҔ0bY:"IsGxƌԴQ55!Oӯh*ݪ  ThNu2%N{EI{6ߚ(x$VI:Bj{nF+|HۚR; "hF$;htdW1gk看DPscv&pϙͶlʌMy"VLqL2Dd Oh  s *A? ?3"`?2kvv;̻.ZvHWc`!kvv;̻.ZvHW@0, exTkAf6I؍"JZ%& M= &ª$i4's*Kz(xC/^{E{,( ݴD[?ACBDYZFGHIJKLMNOPQRSTUVWX\]^_`abcdefghijklmnoRoot EntryP F`Q(Data 7WordDocumentO*$ObjectPoolRQ`Q_1483362048FQQOle CompObjiObjInfo "#$%&'*-./038;>ABCDGJKLMNQTUVWXYZ]`abcfijklmnqtuvwxyz} FMathType 4.0 Equation MathType EFEquation.DSMT49qWA@6M6G DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   44Equation Native ]_1483362105" FQQOle  CompObj i ()" 481 ()==48 FMathType 4.0 Equation MathType EFEquation.DSMT49qW@6M6G DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APObjInfo Equation Native _1483362116FQQOle G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   132 () FMathType 4.0 Equation MathType EFEquation.DSMT49qW7@6M6G DSMT4WinAllBasicCodePagesCompObjiObjInfoEquation Native S_1483362125 1FQQTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  2" 43 ()" 42 () FMathType 4.0 Equation MathType EFEquation.DSMT49qOle CompObjiObjInfo Equation Native !WÍ@6M6G DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   132 ()"2" 43 ()" 42 ()==3744_1483362134FQQOle (CompObj)iObjInfo+ FMathType 4.0 Equation MathType EFEquation.DSMT49qW@6M6G DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  4" Equation Native ,;_1070213040FQQOle 1CompObj 2V135 ()==5148FMathType Equation 3.6DNQEEquation.DSMT36 4 5FMathType Equation 3.6DNQEObjInfo!4Equation Native 54_1070213142$FQQOle 6CompObj#%7VObjInfo&9Equation Native :P_1483362153,)FQQEquation.DSMT364 104 5 =10240 FMathType 4.0 Equation MathType EFEquation.DSMT49qOle <CompObj(*=iObjInfo+?Equation Native @W@6M6G DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   133 () FMathType 4.0 Equation MathType EFEquation.DSMT49q_1483362161.FQQOle ECompObj-/FiObjInfo0HWc@6M6G DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   43 ()" 41 ()" 41 ()Equation Native I_1483362168';3FQQOle OCompObj24Pi FMathType 4.0 Equation MathType EFEquation.DSMT49qW@6M6G DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   133 ()"3" 4ObjInfo5REquation Native S_14833621808FQQOle [3 ()" 41 ()" 41 ()==54912 FMathType 4.0 Equation MathType EFEquation.DSMT49qW@6M6G DSMT4WinAllBasicCodePagesCompObj79\iObjInfo:^Equation Native __14833621886E=FQQTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   132 () FMathType 4.0 Equation MathType EFEquation.DSMT49qOle dCompObj<>eiObjInfo?gEquation Native hWh@6M6G DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   42 ()" 42 ()" 441 ()_1483362195BFQQOle oCompObjACpiObjInfoDr FMathType 4.0 Equation MathType EFEquation.DSMT49qW@6M6G DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   132 ()" 42 Equation Native s_1483362207@JGFQQOle {CompObjFH|i()" 42 ()" 441 ()==123552 FMathType 4.0 Equation MathType EFEquation.DSMT49qW @6M6G DSMT4WinAllBasicCodePagesObjInfoI~Equation Native &_1483362216LFQQOle Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   134 ()"4" 42 ()" 41 ()" 41 ()" 41 ()==1098240 FMathType 4.0 Equation MathType EFEquation.DSMT49qW#@6M6G DSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   52CompObjKMiObjInfoNEquation Native ?1Table[S)5 ()==2598960 Oh+'0  0 < H T`hpxnrnulf Borgan Normal.dotmborgan@math.uio.no112Microsoft Office Word@ i@tE6@6@UQ ht!w;=񭳢 )#\ ]]7V϶>Ҷ}"*]s^\^\[MQVn.](@ƫҦQ$Cר܉ޱ33.'D @q;ySwrwANI f7oqqR|)W*Ru٨Vnq*} +jڬZMn*¾B9n8|?7gm]^1_'9;o_t-K?oT쾣dJkh!A\"ThO< ryS;TP{Ɗ@x6I[QnM3}ki d%XO1`jynㅎ@MUO#9A Oy]nș!qo<Dd B  S A? 245:7;{`!z45:7;{8 RRxcdd`` $X aa0Be%,&FF( @q9. b +7dd3|.k pdٌƔe >b*fҊ & P~4mN@~@2Ք h!NTg324C^Jc"8cZp RR\xTn@7EMZH= JԆ^ NL]kw @#7avTB0z&Xiѵ6kҪo+WoB+7'DZPwd}Op"[ NtN?c0̄a0XC 7وkh.0h#XFxM/&ܡ6lZNIx!&Yl2q<၏J9) > J->P>έ( #q` /lQ")iKX$ߊ-\jcJM-9ɴC YDGɒ b5gb%G˒q93.f"ᓹ% j21p {1Ef"T &WeT֕KaeFLsBΛYiqrd7%f=/fۥ_4PuXGU"*@aglQSj|8579gqV){ h[qZ;=(bK9>kx@w Ⱥfp'臁rzt0TpBlllykmi䷄ ?8MDd <B  S A? 2{rZ#J-xW`!OrZ#J-xC ` xxcdd``bd``baV fxxb,PY=F (, fTc@@lʛ2B2sS>}PEƔe EҪYtف"+74K+ss~pp4d x Tƻ1VFPS9ЭՔA[QBHq-ЭrLE [q+0uc[F&$A?(00Czw<^F|38H :C ` xxTn@$M ԪЈS ؎(R"(^ ܐkSgmy4Uĩ < @];n*U0&7ݭ>)jb.H`"*WƏa^,}?pkZyc~/ nC  sJtIg$a<"L&sazL@({  5亻T6 .A7@Jw-{3FyM!檥,竦aنY[}-C1mMu~e[M( Qy.e66[SX6t-\'dW"tR-[V.lp/2%=s/RK܁J0Rz%{H)(hoFEFe80Sa!^2Iha=6HwH9Q|5ɒjy)+=x4HFqFrȣ#<43PV݁Jo$ |9/M*O _4%h]?ӴLՅDdCCM C!(X*'&,Er;e.o'Qm4-K29}S-lA,Lut4f,jM[Zh6mUToC-q( 1:Li]K ="RylF<+7VX,n籱E1Rz3\@uQ)Dd h  s *A? ?3"`?2meJ]kՋ$I/`!AeJ]kՋ$@ xROAfvdh1/&]ڍ,i"6iYҖjOr$\ʁp/ꅃcBbwl"h}oD%&Nvf{>4x鴥 zJmTlkr[|{ ,H~K y=x(^g=U4Ǔ,J"<ҩD5W&ՋZLJ&>잴7y,5Dɛ: k؇_8.-9N13džx;W㵽j=lf—GQ=Xsp >氪)N7e<`</bWלZm!hVհ<w2z!hTP˺ZWs9)ݸdO$*u1*K׋Eߍs,SBҢ F:MP)u" F<D%Ⱥ7/2qR(!7+f+#ŌHmZǦbt^~&Dd th   s *A ? ?3"`?2i5/z3SX`!i5/z3S @ yxTAhA}3MLA6-(m-x6 `$4Һ+69xҳx쥂^S`/肊hX5{K6g!^Θk1t9v]!ﮟR40J0΂|;V^}?v^ 2EkCo6N䠈)9|w4D*SsʪYFu gqVz}?u#Y&F?L5u5-+6tA`x0x0>~/ 8 -ʭ"zꥊQ^5DWJqS>ݭ+i3T!mVu=31t!ǒTpjcqf3.o8vhugjwd OH4R()8]G}dQ Q⸄B {8Z5K'@U O1-Dd P h   s *A ? ?3"`? 2< ZUI\h V !`! ZUI\h V Ĥ@ xUkQ6Im$EEؒI`#!I[Hu`HFs2J/xB/<Z)(ػ.(ƙմ &>fߛ潙a`V$ NJ/g1l6l6d}BA G6d/ 3V9 )LUoτ;{(ŕ_'S$B*n|JRc+', FFmCUVҽt~v̀0a oøe1@{ٯc=xa l39)/uc yt#i7@D6@1Ǟql#.(lT6ܗ;D!ԧqѺWNܭŜaJe^A#0׎[xdȖ6,vIǪuM²ָo_e?wdR ?/rѽ ?,ߨ,'A4OwbRz>\W:@M;/up)L٥JkWl#rѨ3d%|uh›:ʒ=^s")u!iX#&j(ICB_:z#j}ldy[cdg턹olqv԰ˌHLCvM fieMϷSDd h   s *A ? ?3"`? 2pm lwE)`!pm lwE@ xTkAf6IJ6VAj,TB[1$؃`R<ƨ $$hND/G^SA'ZtAFclfo{O(_% V/xq*6`ɕcWDN-{`L`l~~P qJ? h0G0Gp0|0 < WO"\=t`C[Bv S>زHÒ@뗾X -ٔ]$1We^VUə ɷӏJaeI( -ѭՕUbDz[3l9w5Zf&72gTܪ zR,#ICV)>9挤ecڀ'RVz S=nOgc|g>&ɂ:Bt"!Ǩړdշ"?Dz϶?ǧ*]]N)}OCBLZ g,,̤h?;+tG 5x*zؔdČFy( I 3:F(~E;#ɘw4ȟB T}ߔy7H$Dz䗴ԎѥUϝ \ g:2X@FjX:@!bn?K拭ܩh\a5NFµ/ zzR/tqy2F,\aT1zDd h  s *A? ?3"`? 2Xhp RM$xl40`!,hp RM$xl@( xVOA3"0DDHPh H'TZi)Z/61G_Ń\<&DѫF`bV6qNofg{o9K6"I 4;.)XdIZIۘsIڜ[FrG;FZh2.TÝhMlL){9bי/i{M/W?KU5Hi# :aQ_Iuo 3 gt bO`qfog!n]x촘aǜ5gZ05s3 Xix250 %Ĉ?8BO[nNE+[fșUgxH8pmPG9IޗMpdN>mTwqٳFݯ$)*2 g.Y峳Nig3SQ|4KWsWS[ZL m*]XLRU&Us6|&GVT8*@bZf"ߝģ@b"?q !PT*1)&)䰗Hd-6`Œ0֏Wo+BM`.\ٶ6Juo%#܅ r쇕Z_αNѺs͔T\Y C8^onr])q rDd h  s *A? ?3"`?2N>֭x)$Ao4`!N>֭x)$AoҌ @( XxSkAl&]ɦ"ƏJ[)61̖z i]54%I9H. /=٫]Pj|ow&uy} H//}RټYq卑#ʤM΁d{ 8D/I~Ƙ+"[l<2Z&ڶc{%;? lr(J{&?xߛN?xHICD0rbeۇ_W&/bl o?QqnR\7<~LJF6t%n&2*h@qLd*{?;9o ߨ(pFjX1tYxY%ׁҚ^./T+>4z]PqY"̓Fqta=gi=yaeIP J f¢յ9I:.ғ>SH2*B"0 PM)yۂ^$+<[dpSݞ&Hz%%qVfSL͑ڑ 0L9KVaV$ãh}՞">SummaryInformation(QDocumentSummaryInformation8PCompObjr ՜.+,0  hp  Matematisk Institutt, UiO=  nn TitleTittel  F Microsoft Word 97-2003 Document MSWordDocWord.Document.89q  s666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ OJPJQJ_HmH nH sH tH @`@ NormalCJ_HmHnHsHtHPP  Heading 1$<@&5CJKHOJQJJJ  Heading 2$<@&56OJQJDA D Default Paragraph FontViV 0 Table Normal :V 44 la (k ( 0No List ff 2MX-Overskrift27j x]7^j ;CJ OJPJQJ\\ 2MX-Brdtekst7d]7^CJOJPJQJD@D Header  !CJOJPJQJ.)!.  Page Number8Z28  Plain TextCJPJdBd 2MX-Eksempeltekstd]^CJOJPJQJRRR 2MX-Oppgaverad]aCJOJPJQJfbf 2MX-Overskrift37j xx]7^j 5CJOJPJQJ`r` 2MX-Formler 7 d<<]7^ CJOJPJQJXX 2MX-Eksempelnummer =]=6OJPJQJO 2MX-Oppgavesamling-Brdtekst  n@77d]7^7CJOJPJQJ 2MX-Oppgavesamling-Overskrift277x]7^7;>*CJOJPJQJPCP Body Text Indent ^ OJPJQJD2@D List 26^6` OJPJQJRER List Continue 26x^6 OJPJQJ4 4 ~0Footer  p#2/2 ~0 Footer CharCJPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭Vc:E3v@P~Ds |w< R $ j ;pR GR -/  (*az|w!:<h8:d} 2 4 W p r R :::::::::::::::8@0(  B S  ?B D E G H J K M N P S ELB D E G H J K M N P S 33  *hh^h`B*CJOJQJo(hh^h`B*CJOJQJo(hh^h`B*CJOJQJo(hh^h`B*CJOJQJo(hh^h`B*CJOJQJo(hh^h`B*CJOJQJo(hh^h`B*CJOJQJo(hh^h`B*CJOJQJo(hh^h`B*CJOJQJo(   @hD ^D `CJOJQJo(  Zwd2|=~`vcHMtb#3~zMX=WXBVj5lB D @R @UnknownG.[x Times New Roman5Symbol3. .[x Arial3.[x Times;. .[x HelveticaA$BCambria Math#qhJIu+rG1p!20= = KHP  $PHMt2!xx6a n rnulf Borganborgan@math.uio.no4