# Define variables # Temperature: variable T equal 300 # Length of sides of cubic box variable L equal 200 # Spring bond (0) or rigid bond (1) variable rigidbond equal 0 units real # mass = grams/mole # distance = Angstroms # time = femtoseconds # Energy = Kcal/mole # velocity = Angstroms/femtosecond # force = Kcal/mole-Angstrom # temperature = Kelvin # pressure = atmospheres # density = gram/cm^dim atom_style full region box block 0 $L 0 $L 0 $L create_box 1 box bond/types 1 extra/bond/per/atom 1 pair_style lj/class2 10.0 pair_coeff * * 0.05980 3.8008 mass * 14.0 bond_style class2 bond_coeff 1 1.0977 1651.3730 -4069.3178 5984.9629 molecule N2 N2.molecule create_atoms 0 random 500 12345 box mol N2 1234 #make sure no explosion happens minimize 1e-4 1e-4 100 100 #Make the N-N bond rigid if rigidbond=1 if "${rigidbond} == 1" then & "fix shake all shake 0.0001 20 0 b 1" neigh_modify every 1 delay 0 check yes velocity all create $T 3928459 timestep 2 # Equilibrate the system at constant T fix nvt all nvt temp $T $T 1000.0 thermo 100 run 1000 #Start heat addition and run to stabilize unfix nvt fix nve all nve variable eFlux equal 0.001 fix heat all heat 1 ${eFlux} region box run 1000 #Define new thermodynamic output and trajectory dump and start production run thermo_style custom step temp epair etotal press thermo 100 dump 1 all custom 100 dump.lammpstrj id x y z vx vy vz run 100000